VISIR-2: ship weather routing in Python (2024)

Al-Aboosi, F.Y., El-Halwagi, M.M., Moore, M., and Nielsen, R.B.: Renewable ammonia as an alternative fuel for the shipping industry, Current Opinion in Chemical Engineering, 31, 100670, https://doi.org/10.1016/j.coche.2021.100670, 2021. a

Begovic, E., Bertorello, C., Rinauro, B., and Rosano, G.: Simplified operational guidance for second generation intact stability criteria, Ocean Eng., 270, 113583, https://doi.org/10.1016/j.oceaneng.2022.113583, 2023. a

Bentley, J.L.: Multidimensional binary search trees used for associative searching, Communications of the ACM, 18, 509–517, 1975. a

Bertsekas, D.: Network Optimization: Continuous and Discrete Models, Athena Scientific, Belmont, Mass. 02178-9998, USA, 1998. a, b, c, d, e

Bouman, E.A., Lindstad, E., Rialland, A.I., and Strømman, A.H.: State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping – A review, Transport. Res. D-Tr. E., 52, 408–421, https://doi.org/10.1016/j.trd.2017.03.022, 2017. a, b, c, d

Breithaupt, S.A., Copping, A., Tagestad, J., and Whiting, J.: Maritime Route Delineation using AIS Data from the Atlantic Coast of the US, J. Navigation, 70, 379–394, https://doi.org/10.1017/S0373463316000606, 2017. a

Breivik, Ø. and Allen, A.A.: An operational search and rescue model for the Norwegian Sea and the North Sea, J. Marine Syst., 69, 99–113, 2008. a

Bullock, S., Mason, J., Broderick, J., and Larkin, A.: Shipping and the Paris climate agreement: a focus on committed emissions, BMC Energy, 2, 5, https://doi.org/10.1186/s42500-020-00015-2, 2020. a, b, c

Carchen, A., Gaggero, T., Besio, G., Mazzino, A., and Villa, D.: A method for the probabilistic assessment of the on-board comfort on a passenger vessel route, Ocean Eng., 225, 108702, https://doi.org/10.1016/j.oceaneng.2021.108, 2021. a

Claughton, A.: Developments in the IMS VPP Formulations, in: Fourteenth Chesapeake sailing yacht symposium, Annapolis, Maryland, 1–20, 1999. a

Claughton, A.R.: Developments in hydrodynamic force models for velocity prediction programs, in: Proceedings of the International Conference The Modern Yacht, The Royal Institution of Naval Architects, RINA, Paper: P2003-4 Proceedings, ISBN0 903055 91 0, 2003. a

Dijkstra, E.W.: A note on two problems in connexion with graphs, Numerische Mathematik, 1.1, 269–271, https://doi.org/10.1145/3544585.3544600, 1959. a

DoS: Green Shipping Corridors Framework, Tech. rep., US Department of State, https://www.state.gov/green-shipping-corridors-framework/ (last access: 20May2024), 2022. a

Faber, J., van Seters, D., and Scholten, P.: Shipping GHG emissions 2030: Analysis of the maximum technical abatement potential, Tech. rep., CE Delft, 2023. a

Farkas, A., Parunov, J., and Katalinić, M.: Wave statistics for the middle Adriatic Sea, Pomorski zbornik, 52, 33–47, https://doi.org/10.18048/2016.52.02, 2016. a

Feeman, T.G.: Portraits of the Earth: A mathematician looks at maps, American Mathematical Soc., 18, 62–64, ISBN0-8218-3255-7, 2002. a

Filipiak, D., Węcel, K., Stróżyna, M., Michalak, M., and Abramowicz, W.: Extracting Maritime Traffic Networks from AIS Data Using Evolutionary Algorithm, Bus. Inf. Syst. Eng., 62, 435–450, https://doi.org/10.1007/s12599-020-00661-0, 2020. a

gov.uk: Clydebank Declaration, Tech. rep., UK Department for Transport, https://www.gov.uk/government/publications/cop-26-clydebank-declaration-for-green-shipping-corridors (last access: 20May2024), 2021. a

GuedesSoares, C.: Effect of heavy weather maneuvering on the wave-induced vertical bending moments in ship structures, J. Ship Res., 34, 60–68, 1990. a

IMO: MEPC.304(72) Initial IMO strategy on reduction of GHG emissions from ships, Tech. Rep. Annex 11, International Maritime Organization, London, UK, 2018a. a

IMO: SDC 5/J/7 Finalization of second generation intact stability criteria, Tech. rep., International Maritime Organization, London, UK, 2018b. a

IMO: MEPC.80/(WP.12) Report of the Working Group on Reduction of GHG Emissions from Ships Report of the Working Group on Reduction of GHG Emissions from Ships, Tech. rep., International Maritime Organization, London, UK, 2023. a

IPCC: Sixth Assessment Report, WG3, Ch.10, Tech. rep., IPCC, https://www.ipcc.ch/report/ar6/wg3/ (last access: 20May2024), 2022. a

IPCC: AR6 Synthesis Report: Climate Change 2023, Tech. rep., IPCC, https://www.ipcc.ch/report/ar6/syr/ (last access: 20May2024), 2023. a

Ladany, S.P. and Levi, O.: Search for optimal sailing policy, European J. Oper. Res., 260, 222–231, https://doi.org/10.1016/j.ejor.2016.12.013, 2017. a

Laxague, N.J., Özgökmen, T.M., Haus, B.K., Novelli, G., Shcherbina, A., Sutherland, P., Guigand, C.M., Lund, B., Mehta, S., Alday, M., and Molemaker, J.: Observations of near-surface current shear help describe oceanic oil and plastic transport, Geophys. Res. Lett., 45, 245–249, 2018. a

LeGoff, C., Boussidi, B., Mironov, A., Guichoux, Y., Zhen, Y., Tandeo, P., Gueguen, S., and Chapron, B.: Monitoring the greater Agulhas Current with AIS data information, J. Geophys. Res.-Oceans, 126, e2021JC017228, https://doi.org/10.1029/2021JC017228, 2021. a

Li, H. and Yang, Z.: Incorporation of AIS data-based machine learning into unsupervised route planning for maritime autonomous surface ships, Transport. Res. E-Log., 176, 103171, https://doi.org/10.1016/j.tre.2023.103171, 2023. a

Lindstad, H., Asbjørnslett, B.E., and Jullumstrø, E.: Assessment of profit, cost and emissions by varying speed as a function of sea conditions and freight market, Transport. Res. D-Tr. E., 19, 5–12, https://doi.org/10.1016/j.trd.2012.11.001, 2013. a

Lionello, P., Cogo, S., Galati, M., and Sanna, A.: The Mediterranean surface wave climate inferred from future scenario simulations, Global Planet. Change, 63, 152–162, https://doi.org/10.1016/j.gloplacha.2008.03.004, 2008. a

Lolla, S. V.T.: Path planning and adaptive sampling in the coastal ocean, Ph.D. thesis, Massachusetts Institute of Technology, http://hdl.handle.net/1721.1/103438 (last access: 20May2024), 2016. a

Maneewongvatana, S. and Mount, D.M.: It's okay to be skinny, if your friends are fat, in: Center for geometric computing 4th annual workshop on computational geometry, 2, 1–8, 1999. a

Mannarini, G. and Carelli, L.: [VISIR-1.b ship routing model] source code (Matlab), Zenodo [code], https://doi.org/10.5281/zenodo.2563074, 2019a. a

Mannarini, G. and Carelli, L.: VISIR-1.b: ocean surface gravity waves and currents for energy-efficient navigation, Geosci. Model Dev., 12, 3449–3480, https://doi.org/10.5194/gmd-12-3449-2019, 2019b. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o

Mannarini, G., Lecci, R., and Coppini, G.: Introducing sailboats into ship routing system VISIR, in: 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA), IEEE, 1–6, https://doi.org/10.1109/IISA.2015.7387962, 2015. a

Mannarini, G., Pinardi, N., Coppini, G., Oddo, P., and Iafrati, A.: VISIR-I: small vessels – least-time nautical routes using wave forecasts, Geosci. Model Dev., 9, 1597–1625, https://doi.org/10.5194/gmd-9-1597-2016, 2016a. a, b, c, d, e, f, g

Mannarini, G., Turrisi, G., D'Anca, A., Scalas, M., Pinardi, N., Coppini, G., Palermo, F., Carluccio, I., Scuro, M., Cretì, S., Lecci, R., Nassisi, P., and Tedesco, L.: VISIR: technological infrastructure of an operational service for safe and efficient navigation in the Mediterranean Sea, Nat. Hazards Earth Syst. Sci., 16, 1791–1806, https://doi.org/10.5194/nhess-16-1791-2016, 2016b. a

Mannarini, G., Carelli, L., Zissis, D., Spiliopoulos, G., and Chatzikokolakis, K.: Preliminary inter-comparison of AIS data and optimal ship tracks, TransNav, 13, 53–61, https://doi.org/10.12716/1001.13.01.04, 2019a. a

Mannarini, G., Subramani, D., Lermusiaux, P., and Pinardi, N.: Graph-Search and Differential Equations for Time-Optimal Vessel Route Planning in Dynamic Ocean Waves, IEEE T. Intell. Transp., 21, 3581–3593, https://doi.org/10.1109/tit*.2019.2935614, 2019b. a, b, c, d, e, f

Mannarini, G., Carelli, L., Orović, J., Martinkus, C.P., and Coppini, G.: Towards Least-CO2 Ferry Routes in the Adriatic Sea, J. Marine Sci. Eng., 9, 115, https://doi.org/10.3390/jmse9020115, 2021. a

Mason, J., Larkin, A., Bullock, S., van der Kolk, N., and Broderick, J.F.: Quantifying voyage optimisation with wind propulsion for short-term CO2 mitigation in shipping, Ocean Eng., 289, 116065, https://doi.org/10.1016/j.oceaneng.2023.116065, 2023a. a, b

Mason, J., Larkin, A., and Gallego-Schmid, A.: Mitigating stochastic uncertainty from weather routing for ships with wind propulsion, Ocean Eng., 281, 114674, https://doi.org/10.1016/j.oceaneng.2023.114674, 2023b. a, b, c, d

Miola, A., Marra, M., and Ciuffo, B.: Designing a climate change policy for the international maritime transport sector: Market-based measures and technological options for global and regional policy actions, Energy Policy, 39, 5490–5498, https://doi.org/10.1016/j.enpol.2011.05.013, 2011. a

Orda, A. and Rom, R.: Shortest-path and Minimum-delay Algorithms in Networks with Time-dependent Edge-length, J. ACM, 37, 607–625, https://doi.org/10.1145/79147.214078, 1990. a, b, c

Salinas, M.: Ferry case study, TIB AVPortal [video], https://doi.org/10.5446/s_1687, 2024a. a

Salinas, M.: Sailboat case study, TIB AVPortal [video], https://doi.org/10.5446/s_1688, 2024b. a

Salinas, M.L., Carelli, L., and Mannarini, G.: [VISIR-2 ship weather routing model] source code (Python), Zenodo [code], https://doi.org/10.5281/zenodo.10960842, 2024a. a, b, c, d, e

Salinas, M.L., Carelli, L., and Mannarini, G.: [VISIR-2 ship weather routing model] raw data, Zenodo [data set], https://doi.org/10.5281/zenodo.10674079, 2024b. a

Salinas, M.L., Carelli, L., and Mannarini, G.: [VISIR-2 ship weather routing model] intermediate products, Zenodo [data set], https://doi.org/10.5281/zenodo.10674082, 2024c. a

Schroeder, K. and Chiggiato, J.: Oceanography of the Mediterranean Sea: An Introductory Guide, Elsevier, ISBN978-0-12-823692-5, 2022. a, b

Sidoti, D., Avvari, G.V., Mishra, M., Zhang, L., Nadella, B.K., Peak, J.E., Hansen, J.A., and Pattipati, K.R.: A Multiobjective Path-Planning Algorithm With Time Windows for Asset Routing in a Dynamic Weather-Impacted Environment, IEEE T. Syst. Man Cyb., 47, 3256–3271, https://doi.org/10.1109/TSMC.2016.2573271, 2017. a

Sidoti, D., Pattipati, K.R., and Bar-Shalom, Y.: Minimum Time Sailing Boat Path Algorithm, IEEE J. Ocean. Eng., 48, 307–322, https://doi.org/10.1109/JOE.2022.3227985, 2023. a, b

Smith, T. and Shaw, A.: An overview of the discussions from IMO MEPC 80 and Frequently Asked Questions, Tech. rep., UMAS, 2023. a

Svanberg, M., Ellis, J., Lundgren, J., and Landälv, I.: Renewable methanol as a fuel for the shipping industry, Renew. Sustain. Energ. Rev., 94, 1217–1228, https://doi.org/10.1016/j.rser.2018.06.058, 2018. a

Szlapczynska, J.: Multi-objective weather routing with customised criteria and constraints, J. Navigation, 68, 338–354, https://doi.org/10.1017/S0373463314000691, 2015. a

Tagliaferri, F., Philpott, A., Viola, I., and Flay, R.: On risk attitude and optimal yacht racing tactics, Ocean Eng., 90, 149–154, https://doi.org/10.1016/j.oceaneng.2014.07.020, 2014. a

Theocharis, A., Balopoulos, E., Kioroglou, S., Kontoyiannis, H., and Iona, A.: A synthesis of the circulation and hydrography of the South Aegean Sea and the Straits of the Cretan Arc (March 1994–January 1995), Prog. Oceanogr., 44, 469–509, https://doi.org/10.1016/S0079-6611(99)00041-5, 1999. a

vanden Bremer, T.S. and Breivik, Ø.: Stokes drift, Philos. T. Roy. Soc. A, 376, 20170104, https://doi.org/10.1098/rsta.2017.0104, 2018. a

Vettor, R. and Guedes Soares, C.: Development of a ship weather routing system, Ocean Eng., 123, 1–14, https://doi.org/10.1016/j.oceaneng.2016.06.035, 2016. a, b

Wilson, G., Aruliah, D., Brown, C.T., Hong, N. P.C., Davis, M., Guy, R.T., Haddock, S.H., Huff, K.D., Mitchell, I.M., Plumbley, M.D., Waugh, B., White, E. P., and Wilson, P: Best practices for scientific computing, PLoS Biol., 12, e1001745, https://doi.org/10.1371/journal.pbio.1001745, 2014. a, b

Zis, T.P., Psaraftis, H.N., and Ding, L.: Ship weather routing: A taxonomy and survey, Ocean Eng., 213, 107697, https://doi.org/10.1016/j.oceaneng.2020.107697, 2020. a, b, c

VISIR-2: ship weather routing in Python (2024)
Top Articles
Latest Posts
Article information

Author: Clemencia Bogisich Ret

Last Updated:

Views: 5716

Rating: 5 / 5 (60 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Clemencia Bogisich Ret

Birthday: 2001-07-17

Address: Suite 794 53887 Geri Spring, West Cristentown, KY 54855

Phone: +5934435460663

Job: Central Hospitality Director

Hobby: Yoga, Electronics, Rafting, Lockpicking, Inline skating, Puzzles, scrapbook

Introduction: My name is Clemencia Bogisich Ret, I am a super, outstanding, graceful, friendly, vast, comfortable, agreeable person who loves writing and wants to share my knowledge and understanding with you.